AD-A217 123

APPROVED FOR

»
PUBLIC DISTRIBUTION
i Ry
MASSACHUSETTS INTITUTE OF TECHNOLOGY ) VLSI PUBLICATIONS

DTIC

FLECTE
VLSI Memo No. 89-566 JAN 177 1‘39(JD

October 1989

Performance Tradeoffs in Multithreaded Processors

Anant Agarwal

Abstract

High network and memory latencies in large-scale multiprocessors can cause a significant
drop in processor utifization. Overlapping computation from alternate processes with
memory accesses in multithreaded processors can reduce processor idle time. A
multithreaded processor maintains multiple process contexts in hardware and can switch
between them in a few (say, zero to 16) cycles. This paper proposes an analytical
performance model for multithreaded processors that includes cache interference, network
contention, and context-switching overhead effects. The model is validated through our
own simulations and by comparison with previously published simulation results. Our
results indicate that processors can substantially benefit from multithreading, even in
systems with small caches. Large caches yield close to full processor utilization with as few
as 2 to 4 processes, while small caches require two to four times more processes. Increased
network contention due to multithreading has a negligible effect on performance, and the
context switching overhead sets a limit on the best possible utilization.
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Performance Tradeoffs in Multithreaded Processors

Anant Agarwal
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Cambridge, MA 02139

Abstract

High network and memory latencies in large-scale multiprocessors can cause a significant
drop in processor utilization. Overlapping computation from alternate processes with mem-
ory accesses in multithreaded processors can reduce processor idle time. A multithreaded
processor maintains multiple process contexts in hardware and can switch between them in
a few (say, zero to 16) cycles. This paper proposes an analytical performance model for
multithreaded processors that includes cache interference, network contention, and context-
switching overhead effects. The model is validated through our own simulations and by
comparison with previously published simulation results. Our results indicate that proces-
sors can substantially benefit from multithreading, even in systems with small caches. Large
caches yield close to full processor utilization with as few as 2 to 4 processes, while small
caches require two to four times more processes. Increased network contention due to mul-
tithreading has a negligible effect on performance, and the context switching overhead sets
a limit on the best possible utilization.

1 Introduction

As we build larger and larger parallel machines, the proportion of processor time actually spent
in useful work keeps diminishing. There are two reasons for the decreasing processor utilization.
First, the cost of each memory access increases because network delays increase with system size.
As we push VLSI technology and architecture to achieve higher processor clock rates, wire delays
will become predominant making communication and memory accesses even more expensive.
Second, as we strive for greater speed-ups in applications through fine-grain parallelism, the
number of network transactions also increases. Synchronization and process management further
reduce the actual time spent doing useful work, but we do not consider these here.

A method of improving processor utilization is to multithread the processor. The idea is
to switch the processor to a new thread and perform useful computation while the previous
thread’s memory request is being satisfied. While multithreading has usually meant cycle-by-
cycle interleaving of instructions from different processes, we will apply the same term to non
single-cycle interleaved rapid context-switching processors as well. Several previous processor
designs used this technique to mask communication latencies or to utilize deep pipelines effec-
tively, e.g. (1, 2, 3, 4, 5, 6, 7). By multithreading a processor such that an instruction from a
different thread can be initiated every cycle (or every few cycles), pipeline bubbles due to pipeline
dependencies or processor stalls due to memory latency can be obviated. Processors in message
passing multicomputers often maintain multiple processes per node to overlap communication
latencies by rapid switching between processes (8, 9].




1.1 The APRIL Processor

We are designing and implementing a multithreaded processor APRIL as part of the ALEWIFE
multiprocessor project-at MIT. ALEWIFE is a large-scale. cache coherent machine. Some
of the previous multithreaded processor designs, such as Halsteads MASA[3], Monsoon (5],
Kaminsky and Davidson work [1], or the Hep [6], in addition to hiding network latencies, used
multithreading as a means of utilizing deep pipelines by avoiding single process resource conflicts,
and suffered from poor single thread performance. APRIL encourages single process execution
in the pipeline using pipeline bypass paths and compiler pipeline optimization to achieve high
single thread performance. APRIL has a register file organized into several register frames (or
windows) that can store multiple process contexts and obviate register saves and restores across
context switches. Each process uses no more than one frame (actually two frames are used per
process - the frame adjacent to the current one is for trap handling). A context switch to a
process whose context is currently stored in one of the register frames on the processor is effected
in a small number of cycles.

The space of processes is virtual, the mapping of process contexts to register frames is
maintained and effected in software. In other words processor register frames act a software-
controlled cache on the virtual space of process contexts.

The current implementation of APRIL uses the SPARC processor [10] with several modifi-
cations. The register set is divided into several frames that are conventionally used as register
windows [11] for speeding up procedure calls. SPARC permits the use of these frames for con-
text switching because the bumping of the frame pointer uses a separate instruction and is
not necessarily tied to the procedure call. In our design, a process uses just one frame for
all its procedures and the registers must be saved and restored across procedure calls. unless
inter-procedure register allocation is used.

Fast trap handling, facilitated using the same mechanisms as fast context switches, also
allows a quick processor response to external events and we exploit this feature for several
purposes. In ALEWIFE, adopting a RISC style approach, the cache controller can generate a
processor interrupt for software handling of cases such as coherence directory overflow, special
message arrival, or buffer overflow, which significantly simplifies the controller design.

Rapid-trap-handling also allows efficient handling of Futures {12] and full-empty bit [6] traps.
Our other modifications to SPARC include redefining the tag bits for Futures support, and
alternate space addressing and trapping to support full-empty bits for fine-grain synchronization.
Rapid context switching also makes the use of strong coh: - n.e protocols feasible, because the
processor can switch to a new thread while the acknowledg'. ~» to outstanding memory/cache
transactions is awaited. The cache/network controller in eacu ALEWIFE multiprocessor node
can activate either the trap line to the processor for lengthy transactions, or the wait line for
busy waiting on short transactions such as cache misses to non-remote memory.

1.2 Limitations of Multithreading

There are limits to the improvement achievable through multithreading the processor. Most
important, the application must display sufficient parallelism so multiple threads can be assigned
.0 each processor. Provided sufficient parallelism exists, the improved processor utilization




must be traded off against the negative cache and network effects.! Multiple simultaneously-
active processes interfere with each other in the cache and give rise to a higher cache miss rate
and hence a higher network access rate. Similarly, the higher network traffic generated by a
fullv utilized processor-will result in increased network latencies due to network contention. A
multithreaded processor design must address the tradeoff between higher utilization through
overlapping network access and the increased cache miss rates and network contention.

1.3 Overview

Our analysis is aimed at quantitatively understanding the performance tradeoffs involved in
multithreading a processor. What are the limits to the improvement in processor utilization as
we increase the number of processes” How do cache and network design impact these limits? To
answer these questions, we derived a model of multithreaded processor perfoiuiaiice that takes
into account the deleterious cache and network effects. This model provides insights into the
relationships between the various factors involved, and also performance estimates on expected
processor utilization indicating the domains of feasibility of multithreaded processors.

We derive a simple expression for processor utilization that takes into account network
contention effects, cache interference effects and context switching overhead. As an indication
of the results we obtained, for a set of default parameters given in Table 1, we found that when
the number of processes is increased from one to three the processor utilization increases from
0.3 to 0.71, but the corresponding improvement in going from 3 to 5 is just 0.71 to 0.88 due to
increased cache interference and context switching overhead.

Clearly, our performance predictions come with a caveat. The model neglects several im-
portant concerns, such as the availability of enough parallel threads, register file management,
impact on the clock cycle, and context-switch decision making. Because these parameters are
closely related to the characteristics of parallel applications and implementation constraints,
the ultimate test of the success of multithreaded processors can only be in an actual system
implementation. The APRIL processor architecture and the associated software system design
as part of the ALEWIFE multiprocessor project is aimed at investigating these issues in more
detail. However, the model presented in this paper can still be used to evaluate tradeoffs in the
design process. Furthermore, driving the model with parameters measured from real parallel
applications does lend credibility to our results.

The rest of the paper is organized as follows. Section 2 presents the multithreaded processor
performance model. This model includes a network model described in Section 3 and a fine-grain
multiprogrammed cache model in Section 4. Section A in the appendix extends the model to
include several related effects. Validations of the model are in Section 5. Section 6 uses this
mode] to analyze the tradeoffs in multithreaded processors. Section 7 compares our results to
previous analyses of multithreaded processors and presents more validations. Section 8 presents
directions for future work and the current status of our project.

1We will assume for the purpose of this study that the processor includes a cache, where coherence is maintained
either by using some form of scalable directory scheme as in ALEWIFE, or purely in software.
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Figure 1: Hiding network latency by multithreading the processor.
2 A Multithreaded Processor Performance Model

A model for a multithreaded processor must represent the tradeoff between increased processor
utilization due to overlapping network access with useful execution, and the resulting higher
cache miss rate and network latency. For the purpose of this analysis we assume that the
processes active on a processor have similar miss rates and that between misses the processes
are executing useful instructions. The processor cycles spent in context-switching are considered
wasted.

If there are p active processes on a processor (or the number of hariware contexts), let the
time between misses for each process be t(p), the time to satisfy a miss be T'(p), and the time
wasted in context-switching be C. (Exponentially distributed times between misses and network
service times can also be assumed, and is discussed further in Section 2.1.) A process executes
useful instructions for t(p) cycles, suffers a miss, and then waits T(p) cycles for the miss request
to be satisfied before it can proceed. As depicted in Figure 1, some of this network service time
can be overlapped with useful processor execution.

With p available processes, and no overhead, effective processor utilization is

gy _ P UP)
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Context switch overhead can be factored in easily. We assume that the miss rate is inde-
pendent of the context switch overhead, and that the instructions executed during the context
switch do not cause any cache misses. This is a reasonable assumption because the code exe-
cuted during the context switch is either cache resident due to frequent reuse, or is hardwired.
The context-switch overhead is independent of the number of hardware contexts in our model.
Say, each context switch sufferes an overhead of C' processor cycles. The utilization equation
remains the same for all p such that

plt(p) + C] < t(p) + T(p)

because the number of useful cycles during the interval t(p) + T(p) is still pt(p). ‘Otherwise,
the utilization becomes limited by the context-switch time. For every t(p) useful cycles, the
processor wastes C context-switch related cycles, yielding a limiting utilization of
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If m(p) is the miss ratio. and context switches to new processes are forced on each miss, t(p)
is simply the inverse of the miss rate. In practice we might force a context switch only on a miss
to a nonlocal memory module. The utilization then becomes,?

-

res N 1 4+ T(p)m(p)
Vilp) = 15 Tpmp; 1P < T+ Cmip)
1 1+ T(p)m(p)
1+ Cm(p)’ forpz 1+ Cm(p) ()

We now need to derive expressions for both m(p) and T(p), which are functions of the number
of processes. Let us start with summarizing the terms used thus far, and the assumptions used
in our analyses.

P Degree of processor multiprogramming
T(p) Time (or number of processor cycles) to satisfy a network request
t(p)  Time between misses
m(p) Cache miss ratio
Util(p) Processor utilization
(o Context-switching overhead in processor cycles

2.1 Assumptions

Our analysis will include the following general assumptions and simplifications.

e We assume all processes sharing the processor have similar properties in terms of their
miss rates and working set sizes.

o Network accesses happen only on cache misses. In a multiprocessor cache there are a few
other cases where a network access is required, such as invalidations. Their effect can be
incorporated into the analysis by adding a constant m;y,, to the miss rate.

¢ Initially, we do not consider the effect of processes sharing data in the cache. In a real
system, the cache interference will be smaller if some fraction of the working sets of the
processes are shared. While low levels of data sharing occur in many applications, sharing
of instruction blocks and read-only data is expected (and must be encouraged). Fur-
thermore, affinity scheduling disciplines that favor same-processor execution of threads
operating on overlapping data sets will also increase the shared fraction in the cache, and
we are investigating several such methods. It then becomes necessary to include the effect
of sharing. The miss rate model is extended in Section A.l by reducing the size of the

2]f the context-switch overhead is considered part of {(p) and if it contributes to the miss rate, the processor
utilization for pt(p) < t(p) + T(p) is given by

1-Cm
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and for pt(p) > t(p) + T(p) is given by
t(p)~-C

Util(p) = ==




individual process working sets by the shared fraction, and amortizing the cost of fetching
the shared blocks over all the threads.

¢ In the simple model discussed in this paper. the effect of the multithreaded miss rate due
to program nonstationary behavior is not included. A process suffers nonstationary misses
when it it renews parts of its working set. When a process returns to the processor, some
fraction of its working set is renewed. If this effect is not accounted for, the analysis will
incorrectly count some nonstationary misses as multithreading related misses. We have
seen that this effect is not significant for most applications. Nevertheless, Section A.2
modifies the model to account for this effect.

e Our processor utilization model assumes fixed time intervals between context switches
and fixed network service time. We could also assume a fixed probability of a miss on any
cycle of processor execution, leading to geometrically distributed time intervals between
context switches (or exponential for the continuous case) with mean t(p), and exponentially
distributed network service times with mean I'(p). Due to the loop nature of programs
exponential time between misses is hard to justify, and in lightly loaded networks the
network service time will be fairly uniform. Nevertheless, the processor utilization can be
derived from a simple M/M/1//M queueing model {13] for a finite population of size p, a
single queueing server (the processor) with exponential service time with mean t(p), and
the network modeled as a delay center with exponential service times with mean T'(p), as
one minus the probability the queueing server (the processor) is idle, or

Util(p) = 1 -

1
P

Some other assumptions that have been traditionally made in network and cache analysis
will also be made and we shall point these out in the relevant sections. Although not essential
to our model, to simplify some of our network latency expressions, we will assume that the
multithreaded processor operates in the range where T(p) >> p. That is, sufficient contexts are
not available to allow a context switch every cycle and completely mask network latency. This
region of values is reasonable for several reasons. First, it is hard to imagine a large number of
available hardware contexts on the processor between which very low-overhead context switches
can occur. Put another way, we are assuming that the caches are useful enough that the miss
rate is reasonably small, and that a large number of contexts is unnecessary. Similarly, for the
network model, we will assume that the interesting operating range is where T(p) >> i(p), or
else the incentive to multithread the processor does not exist. A typical sampling of parameters
might be: T = 100, 1/m(p) = t(p) = 20, and p = 4.

3 Network Latency

This section derives the network latency as a function of the number of active threads in the
processor. We will use a packet-switched multistage interconnection network with kzk switches
(k = 2 in all our analyses). Infinite buffering at the switch nodes is assumed. Simulation
experiments [14] have shown that as few as 4 packet buffers at each switch node can approach
infinite buffer performance. The network model makes the usual assumptions of uniform traffic
rates from all the nodes, and uniformly distributed and independent destinations. Packet size
is B times the network channel width, the number of network stages is n, and the memory

6

®




access time is M cycles. We will drop the dependence of t and T on the number of processes
for notational convenience.

We will start with the interconnection network model proposed by Kruskal and Snir [14].
The probability of a request at a network port is p/T, when T >> t. If M is the memory access
time, and assuming B sized packets, the overall network access time is given by,

bin(pB/T)(1 - 1/k)
2(1 - pB/T)

T=[1+ ]2n+M+B—1

The delay is basically the memory delay plus twice the delay through the network of n
stages. The delay at each switch stage is one plus the queueing delay. This model has been used
extensively in the literature. We also ran simulations with address traces of parallel applications
and found that the predictions of the model were generally accurate.

With 2x2 switches, T becomes

T=[l+m]2n+M+B—l

Solving for T, we get,

T=%2+n+-1‘21+%\fszpuw+4n2+4Mn-4Bpn-2BpM+2szn

The above expression for T can be greatly simplified if we assume T >> Bp,and T >> M.
The above assumptions simply state that both memory access time and the message traversal
time through one network switch stage are small compared to the delay through the network.
Note that these assumptions stem out of our motivation for multithreading processors, which
is the high latency of network accesses in a large-scale multiprocessor system. Because the
unloaded network latency 2n constitutes a large part of T, we can also use 2n >> p. When a
significant part of the network latency is caused by contention delays, or when a large number
of hardware contexts are available for rapid-context switching, we cannot make this assumption,
and the complete expression must be used for T. We first write T as,

_Bp M Bip? M? M Bp BpM B?%
e A T ey ah e R i F R Y

Neglecting second order terms in Bp/n and in m/n we get,

2
Mﬂqu_ﬂ\/uﬂ_zuu
2 2 n n 2n

Taking the first-order terms in the binomial expansion of the square-root expression, we get
a simplified expression for the effective network time with p active processes.

B2
T.~.-2n+M+—4l’ (2)

The above expression for T implies that when the unloaded network access time is much
greater than the number of processes, and if the blocksize is small, then the effective network
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access time with p processes is not significantly different. The reason this is true is that when
the load becomes higher due to a large p, so does the network latency, yielding a lower effective
network access rate due to the negative feedback effect. However, when the network load becomes
larger. i.e.. when the B?p/4 term becomes significant in comparison to 2n + M, the network
contention delay becomes important.

4 A Multithreaded Cache Model

We now derive the effective cache miss rate when there are p processes sharing the cache. The
cache model must account for the increase in cache miss rate as the number of processes increases.
We use the following notation from [15).

Direct-mapped cache size in terms of the number of cache sets (or rows)
Network message length or block size

Working set size of each process in blocks

The size of the time quantum used in measuring the working set

The collision rate used in computing intrinsic interference

The size of the set of blocks a process leaves behind in the cache

when it is switched out, or the size of the carry-over set

e n 3 g hn

We will start with 2 model for multiprogrammed caches. Such a model was derived by Stone
and Thiebaut [16] for two processes, and a similar model for an arbitrary number of processes
was derived by Agarwal, Horowitz, and Hennessy [15]. The model in [15] included the following
assumptions: Mapping of addresses to cache sets is random. Processes display the working set
model of program behavior in that in any given interval of time, a small set of blocks is in
active use. The time interval 7 used in measuring the working set is assumed to be large enough
for the working set of a process to be brought into the cache. The multiprogramming model
further assumed that the context-switch interval is greater than r. This assumption simplified
the analysis greatly and was required so that the process could fetch its entire working set into
the cache during its time slice on the processor.

Our analysis here cannot avail of the last assumption, which is generally valid in single
processor environments, where the system maintains long context switch times when possible to
avoid cache thrashing. However, by its very nature, a multithreaded processor switches contexts
over very short intervals of time. In fact, our analysis assumes that switches are forced on every
miss. Clearly, one miss can hardly replenish the entire working set of a process in the presence
of several intervening processes. Therefore, only a fraction of a process’s working set can then
be retained in the cache in the steady state. '

As an intuitive example, let us suppose context switches happen every cycle. Let the number
of processes active in the cache be large enough that a returning process i finds none of its blocks
in the cache. As defined previously, the carry-over set of a process i is the set of blocks of process
i left in the cache when it is switched out. On the miss, the process i fetches exactly one block
into the cache, yielding a steady-state carry-over set size of one irrespective of its actual working
set size, :

The rest of this section estimates the multiprogrammed cache miss rate for very short context
switching intervals. For comparison, Appendix B presents a simplified miss rate model for
direct-mapped caches with context switch intervals large enough to allow a process to replenish
its working set completely. We first review relevant portions of the analytical cache model found




in [15].

4.1 Review

The steady-state cache miss rate is the sum of three components: the non-stationary, the intrinsic
interference, and the extrinsic interference components. The component of the miss rate caused
by multiprocessor sharing invalidations, m;n,, can also be included. It is not explicitly modeled
in our analysis here, but its effect can be incorporated into the fixed non-stationary miss rate
component. The non-stationary component is the cost of bringing in blocks into the cache due
to first-time references. Our analyses here will simply lump this miss-rate component into the
term denoted m,,. The intrinsic interference component represents the misses caused when the
blocks from the working set of a given processes interfere with each other in the cache. The
extrinsic interference component represents the misses caused due to multiprogramming related
interference. In this paper, we will refer to the non-stationary and multiprocessor invalidation
misses as the fired miss rate components.

For a direct-mapped cache, with the uninterrupted execution interval large enough to bring
in the entire working set of the process, the equation for the intrinsic miss rate component
presented in [15) for a direct-mapped cache (d = 1) is:

Mintr =

[u -~ Sbhin(u, %,d = 1)]

(3]

where ¢, the collision rate, is independent of cache size (for cache size greater than the working
set size) and is treated as a constant in our analysis. The term bin(u, $,d) is the binomial
distribution® and represents the probability that d blocks from the working set of size u map
into one of the § cache sets. u minus S times the value of this distribution at d = 1 yields the
number of blocks of the process that collide with each other in the cache. This number times
the collision rate divided by the interval yields the miss rate.

1o 910

The fine-grain context-switching model requires the computation of the carry-over set size v
of a process. As defined previously, the carry-over set of a process ¢ is the set of blocks of the
process left in the cache when it is switched out. The size of this set for process i is v when it
is the only process active in the cache. Because of replenishment, v is independent of p.

If blocks are randomly mapped to cache sets, then the carry-over set can be derived from
the working set size u as

v=5[1-(1--§)"] )

where the probability thai a given block does not map into a given set is (1 —1/5), which when
raised to power u is the probability no block from the process’s working set maps into that set.
One minus the above quantity is the probability there is at Jeast one block mapped to a cache
set, which when multiplied by § yields the number of cache sets used.*

bintu b= (5 ) 40— 4

For simplicity, our definition for the carry over set here does not make the correction suggested in {15] for the
blocks left behind in the cache by a process that are more likely to be purged due to intrinsic interference. The
difference between the model here and the more accurate one is very small.




The analysis in the next section focuses on modified models for the interference components
when the context switch interval becomes small.

4.2 Miss Rate wi;h Small Context-Switch Intervals

When the context-switching interval becomes very small, the size of the carry-over set also
reduces. Let v/(p) be the steady-state carry-over set size with p processes sharing the cache,
when the context-switch time is small. Multiprogramming the cache with a small interval
increases the intrinsic interference component of misses. The process effectively sees a smaller
cache and hence its intrinsic interference component increases to m;,, .(p). Having to replenish
part of the effective carry over set each time the process is scheduled to run on the processor
adds in the fine-grain-context-switching component of misses denoted m.,(p). (m.(p) is used
in Appendix B to repr:sent the coarse-grain-context-switching miss rate of the cache).

4.2.1 Computing m’,(p)

We will first derive the context-switching component of the miss rate m¢,(p). Let v(p) be
the carry-over set size before steady state is reached for the j** occurrence of process i on the
processor. and let ¢(p) be the number of references before a context switch for each process. The
probability of a first-time reference of a block during each access is u/7, which is computed as
the ratio of the number of unique references u to time quantum tau. Then, the total number of
unique blocks accessed by the intervening processes is

.U
(P*l)f;

If the references of the intervening p — 1 processes are randomly distributed throughcut the
cache, then the probability that a given block of the intervening processes maps on top of a
block of process i is v}(p)/S. From this we can approximate the number of block s of process i
displaced from the cache as /()

v’

“5- 1
The above expression assumes that the probability of purging a block of process i stays constant
throughout the intervening (p — 1) processes. An accurate expression for the purged blocks
is v[1 — (1 = 1/8)(P=1)%/7] if ¢ is large enough that a sizable fraction of the carry-over set is
purged. In practice, however, the simpler expression gives almost identical results to the more
complicated expression.

Similarly, when the process i is resumed, it replenishes its set of blocks in the cache. If it runs
for t cycles, accessing tu/7 unique blocks during this time, the number of previously-displaced
blocks fetched into the cache is

v~ vi(p) Y
v T
where (v — vi(p))/v is the probability that a referenced block is not already present in the
cache. As before, a more accurate expression for the number of new blocks can be derived as
(v = vi(p))[1 - (1 - 1/v)"/7) when ¢ is large.

In the steady state, the number of purged blocks must equal the number of replenished
blocks, and v}(p) = v'(p). Thus,
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v)(p) u_v-vp)
- S (p—l)tr B v ‘7

Simplifving, the steady-state carry-over set size with p processes is,

v

e ®

v'(p) =

The above equation indicates that for context-switching intervals that are small compared to
T, the carry-over set size is independent of t. For large t, when the probability of purging or
replenishing a block in the carry-over set is no longer constant over the time interval between
occurrences of a process, the carry-over set-size does indeed depend on t, and the more complex
expressions shown earlier, or their higher order approximations, must be used.

We can make several useful observations from the above estimate of the carry-over set size
v/(p) of each process in a multithreaded processor. When the cache is very large (5§ >> u).
we find that v'(p) = v. aud v =~ u, indicating that the cache can comfortably hold the entire
working set of every process. When the § = v, effective cached working set of each process is
v/p. That is, each process gets only a fraction of its working set inversely proportional to the
number of processes. Finally, when § << v, the cached working set is limited to the cache size
divided by the number of processes, or §/(p - 1).

The corresponding miss rate due to context switching m{,(p) is the rate at which blocks in
the carry-over set of a process are purged by intervening processes.

mi () = v(p) L (6)

4.2.2 Computing m),,.(p)

Now, let us compute the increase in the intrinsic interference component. In Equation 3 we will
recompute the the number of colliding blocks. The new number of colliding blocks is simply the
difference between the working set size u and the number of blocks in the carry-over set v'(p)
that do not collide with other blocks of the process i. Given random placement of blocks in the
cache, the number of non-colliding blocks in the multiprogrammed cache will decrease by the
same fraction as the carry-over set, that is, by the fraction v'(p)/v. We can thus estimate the
number of blocks that do not collide with other blocks of process i as

(=32

and substituting in Equation 3 the intrinsic interference component of the miss rate with p
processes becomes,

()= £ fu—u (1-3) 2] ™

We now derive the increase in the intrinsic interference component due to multithreading as,
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c I\ v'(p)
Mo 9) = minee = Zu (1= 5) (1= 22 ®)
Intuitively, in the above equation. u(l — 1/5)* is the number of blocks of a processes that
do not collide in a single-process cache, (1 — v'(p)/v) is the fraction of these blocks that become
involved in collisions in a multithreaded cache, and ¢/ is the average number of times a colliding
cache block causes cache misses.

Thus, the net increase in the miss rate due to multiprogramming with small context-switch
intervals, denoted m’'(p), is the sum of m.,(p) and m! .. (p) — Mine,, or,

m'(p) = my(p) + Miner(P) = Minesr
L p=-Du ¢ 1\¢¥ v'(p)
= v+ Su(1-3) (1-5 ) (9)

where v'(p) and v are obtained from Equations 5 and 4 respectively. The overall miss rate can be
represented as the sum of the multiprocessor invalidation component, nonstationary component
(both constants for this analysis), single process interference component (Equation 3), and the
component due to multithreading (Equation 9).

M(P) = Miny + Mns + Miner + m'(p) (10)

4.3 Model Summary and Simplifications

The expressions for network latency derived in Equation 2 and that for cache miss rate from 10
can be substituted into Equation 1 for the processor utilization.

The cache model can be significantly simplified to obtain the nature of the dependence of
the miss rate on the number of processes. We will first obtain a simplified expression for the
ratio of m'(p) and miner. Replacing v'(p) and v by their respective formulae in terms of u, .S,
and p, and making the approximation

1\* u
(4o
S S
the ratio of the multithreading induced miss rate to the intrinsic miss rate to:

m'(p) . (p-1) Q+ %)

£ 11

Minee 1+ (p-1)% (1)
Furthermore, in the region where (p — 1)u << S, we can further simplify the ratio to:

m) L 1y (141)

e ® (p-1{1+ . : (12)
The overall miss rate is then,

1
m(p) =& Miny + Mny + Miner + Miner(p — 1) (1 + ;) (13)
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or simplified for small u/S.
(14)

5 Validation of the Model

We conducted some experiments to verify that our approximations in the cache model were
indeed valid. The validations use three traces: IVEXO is a sample trace of a DEC program,
Interconnect Verify, checking net lists in a VLSI chip (under VMS). LocusRoute is a global
router for VLSI standard cells. The SIMPLE code models hydrodynamic and thermal behavior
of fluids in two dimensions.

We extracted a trace of one processor from the multiprocessor traces and replicated it mul-
tiple times to simulate the effect of a multithreaded processor trace. IVEXO is itself a single
processor trace, SIMPLE is a 64 processor trace and LocusRoute has 8 processors. The process
identifier of each thread was hashed into the address used to index into the cache to avoid sys-
tematic collisions with the same addresses of the other processes. While, using a multithreaded
trace generated from individual traces of all the processors would have been a more realistic
situation, validation is hard because of statistical variations between the individual traces and
the difficulty of deriving real parameterized traces with varying numbers of processes.

Figure 2 shows the model predictions and simulation results. The plots show the increase in
miss rate due to multithreading for caches with § = 16K, and block size 16 bytes.> In general
the predictions were quite good. LocusRoute and SIMPLE compared well with simulations,
while the IVEXO trace yielded a poorer match. In both LocusRoute and SIMPLE the miss rate
increase with number of processors is small because of the smaller working set size compared to
IVEXO0. Part of the reason IVEXO0 has a higher working set size is that the IVEXO0 trace, unlike
the other two traces, includes operating system references. Qur conjecture why the IVEX trace
yielded a poorer match was because of an optimistic assumption regarding the non-stationary
component. When the nonstationary correction was not specifically included in the model, the
analytical model results tended to be much higher than the simulation. The same was true for
SIMPLE. The nonstationary correction assumes that the nonstationary blocks fetched in each
time quantum do not contribute to multithreading interference misses, which is an optimistic
assumption.

We found that the approximate miss rate model using Equation 12 is valid up to only about 6
processes, which is as expected because the approximation is invalid when (p—1)u/S is no longer
negligible compared to 1. The more accurate from Equation 11 is virtually indistinguishable
from the most accurate model of Equation 10 (shown in the Figure).

®For the purpose of validation, the correction to the model for non-stationarity in the program is included in
the graphs. The SIMPLE graphs use a cache with S = 64X because of systematic collisions in smaller caches.
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Figure 2: Increase in the miss rate of a fine-grain multiprogrammed cache.

6 Performance Implications of Multithreading

Multithreading impacts performance in three ways. A higher degree of multithreading typically
suffers a higher network latency and a higher cache miss rate. The larger number of processes
allows some fraction of the network delay to be overlapped with computation often increasing
the processor utilization, to the extent that the overhead of context switching does not detract
from the benefits. Let us first make some general observations from the model.

The increase in network latency is proportional to the number of processes and to the square
of the block size. If the unloaded base latency is large the contention effects can be ignored.

From the simple model, to first order, the processor utilization does not change due to
multithreading if the intrinsic interference component of the cache miss rate is high, which can
happen if the cache is small compared to the working set size of a process. This is easily seen
from the processor utilization Equation 1 with m(p) substituted from Equation 13. A high m,,,,
component implies that the processor utilization is roughly,

i(p) =~ P
M (1+1) Jor p>1

However, if the ratio of processes to cache size (p — 1)/S is held constant, the utilization
increases linearly with the number of processes, despite a high interference component. That is,
to support more processes with the same high interference miss rate, the cache should be made
proportionally larger, as can be seen by substituting maer = cu?/S7 in the above equation,

ey P
Util(p) = T(p)ﬁ'}(p.- D (1 " %) for p>1

On the other hand, if the interference miss rate component is small compared to the sum of
the fixed miss rate components m,, and m,,,, utilization will increase linearly with the number
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of processes given the same cache size. The utilization equation becomes

., ~ p
- : tll(p) ~ 1+ T(p)(mna + minv)

for p>1

Our experience with multiprocessor simulations with parallel applications has been that the fixed
miss rate component is generally large relative to the intrinsic interference component. Both
higher multiprocessor cache invalidation rates and smaller working sets of fine-grain processes
contribute to this observation, and future multiprocessors are increasingly likely to operate in
this range.

For large caches, the cache model also supports the intuition that the interference component
of the miss rate is proportional to the number of processes and inversely proportional to the
cache size.

The intrinsic and the extrinsic components of the miss rate are related to the square of the
working set sizes of the processes. Working set changes will dramatically impact cache perfor-
mance. Hence effort put into compacting data words efficiently into cache blocks to increase
the fraction of used words in cache lines will be effort well spent. Process sharing of blocks on
a processor must be encouraged for the same reason. Reduction in the private working sets of
the processes yields proportionally greater benefits in cache miss rate and processor utilization
due to the square law dependence on the working set size.

As investigated in Section A.1, threads can benefit substantially by sharing data in the cache.
Sharing helps in two ways: the working set sizes that contribute to multithreading interference
misses are effectively reduced, and the cost of fetching in shared blocks are amortized over all
the threads.

Context-switching overhead becomes important only when the number of processes is large
enough to completely overlap the network latency with processor execution (including the pro-
cessor cycles spent in context-switching). The reason is that for a smaller number of processes,
the processor cycles wasted in context switching would otherwise have been spent in waiting on
the network.

We will now use the accurate model to estimate the effects of varying the parameters on
processor utilization using the default parameters given in Table 1. The miss rate and working
set size defaults are typical of the applications we have measured. Figure 3 shows the degree
to which each component impacts overall processor utilization. For the parameters chosen,
network contention has little effect. Cache miss rate is the predominant factor, and the context
switching overhead becomes important only when the number of processes is large enough to
allow complete masking of network latency.

6.1 Effect of Network Contention

Let us first investigate the impact of the increased network contention on processor utilization
keeping the other factors such as cache miss rate at a constant value and the overhead at zero.
Figure 4 shows the effect of contention for three different values of the base network and memory
latency 2n + M. ’

For small latencies, as in the case for a small multiprocessor system, one to 4 processes are
sufficient to yield close to perfect utilization when the cache effects and overhead are ignored.
As network latencies become larger, say in a large-scale machine, more processes become useful.
The effect of increased network contention caused by more processes is small for the packet size
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Parameter Value

Context switching overhead 4 cycles
Network and memory latency | 100 cycles
Fixed miss rate 2%

Cache block size 16 bytes
Average message size 4 words
Process working set size 250 blocks
Cache size (§ = 4K) 64Kbytes

Table 1: Default analysis parameters.

Figure 3: Relative sizes of the various components that affect processor utilization.
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Figure 4: Impact of increased network contention on processor utilization. The solid curves
represent the ideal utilization without the extra network contention and the dashed curves
correspond to the lowered utilization due to network contention.

chosen. Because the contention is related to the square of the packet size, greater packet sizes
will cause the network effects to become more important.

Vur model used a packet-switched multistage interconnection network, whose clock cycle
was assumed to be independent of the number of processors. In practice, switching delays in
driving longer wires in large systems will cause the network latencies to increase. Similarly,
mesh or cube connected direct networks suffer longer latencies due to the increased number of
hops. When network latencies increase multithreading the processor becomes even more useful.

6.2 Effect of Context-Switching Overhead

Figure 5 shows the effect of context switching overhead for the default set of parameters. Context
switching overhead gives rise to a limiting utilization of 1/(1 4+ m(p)C). Once utilization reaches
its maximum value for p = (1 + m{p)T(p))/(1 + m(p)C), increasing it further decreases the
utilization because the miss rate becomes worse. We see this effect when the overhead is greater
than one in Figure 5.

The effect of overhead will have a significant impact on processor design. Obtaining very
small overheads will mean significant hardware additions to the processor. On a switch, the
program counters and the processor status word must be saved, the register frame pointer must
be bumped, the pipeline must be restarted. Program counters could be saved in a stack much
like per-processor register frames. The effect of pipeline flushing is harder to minimize because
register instructions from the previous process cannot write to the current frame and bypass
registers might be storing some hidden state. Additional hardware can mitigate some of these
problems, but then the impact on cycle time must also be considered. If slightly higher overheads
can be tolerated, the task of the processor designer will be significantly simplified.
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Figure 5: Impact of context-switching overhead on processor utilization.

Our results do indicate that higher overheads can be tolerated if the number of processes
needed to fully utilize the processor is small. For example, with a 4 cycle overhead and 8
processes the utilization is still close to 90%. Put another way, because the product of the miss
rate and the overhead determine utilization, a relatively high context-switching overhead can be
tolerated if the miss rate is correspondingly low.

6.3 Cache Effects

Figure 6 shows the effect of the fixed cache miss rate for the default parameter set. As few as
two or three processes can fully mask network latency for fixed miss rates of up to 1%. A higher
nonstationary miss rate requires many more processes to obtain comparable utilization, although
the utilization bears an almost linear relationship to the number of processes because of the low
interference component. Recall that the multithreading interference overhead is determined by
the product of the intrinsic interference component and the number of processes.

When the working set size is larger (Figure 7) the rate of increase of processor utilization
with the number of processes is much smaller. The reason is that the larger working set suffers
a higher interference component, which causes the overall miss rate to increase in proportion
to the number of processes. Figure 7 cleazly shows the dramatic impact of working set size on
processor utilization.

Figure 8 assesses the impact of cache size. Cache size effects are small for caches greater than
64Kbytes (S = 4096) because large caches can comfortable sustain the working sets of multiple
processes (see discussion following Equation 5). In large caches the interference component is
much smaller than the nonstationary component, making multithreading always useful. Smaller
caches suffer more interference. When the cache is-small, the relative effect of increasing the
number of processes is smaller because higher interference detracts from the benefit of hav-
ing more processes. For example, just three processes achieved 70% processor utilization in a
64Kbyte cache (S = 4096), while a comparable utilization required 6 processes in a 16 Kbyte
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Figure 6: Impact of increased cache miss interference on processor utilization. Varying fixed
miss rate.

cache (S = 1024). The marginal benefit of adding more processes keeps decreasing as caches
become smaller.

6.4 Effect of Network and Memory Latency

How large a network and memory latency can we mask using multithreading? Suppose we had
8 processes available to run on the processor. Then as the flat region of the corresponding curve
in Figure 9 depicts, multithreading can mask all network latencies up to a maximum of 200
cycles. The maximum utilization is determined by the context switch overhead and is roughly
0.85 for 8 processes. If the number of available processes is only 2, then a latency increase from
25 to 100 cycles causes the utilization to drop from 0.9 to 0.55.

7 Related Work

Bert Halstead advocated the use of multithreaded processors as the processing nodes in mul-
tiprocessors and presented some analyses to estimate the benefits of multithreading [17], but
without accounting for network contention, context switching overhead, fixed cache miss r-te,
and sharing in the cache. The cache miss rate as a function of processes is modeled as the
cache size per process raised to some power (both powers -1 and -0.5 are tried), and the cache
size per process is chosen to be the total cache size divided by the number of processes. Our
analyses shows that a similar relationship between the cache miss rate, cache size, and number
of processes is valid only when the fixed miss rate is negligible compared to the interference
component, and when cache sizes are smaller than the individual process working sets (see dis-
cussion following Equation 5). However, in practice, the fixed miss rate for large caches usually
dominates over the interference components, and process working sets are rarely bigger than
cache size.
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Halstead uses a queueing model to obtain the probability that at least one process is available
torun on the processor, which is simply the processor utilization. Although we assumed constant
switch times and constant service times dependent on the number of processes for our results.
we showed how exponential distributions for the above intervals can be used in our model in
Section 2.1. In Halstead’s analyses more contexts always yielded better processor utilization.
while in ours, more contexts often harmed utilization because of smaller time intervals with
more contexts given a fixed context switching overhead.

Weber and Gupta conducted a simulation study to explore the benefits of multithreading
processors using add. ess traces from parallel applications. In the parameter ranges of the traces
they measured, our analytical results yield the same conclusions. When the network latency is
fairly small (say less than 50 cycles), very few (2 to 4) contexts are sufficient to yield close to
complete processor utilization. Often, when the active contexts were increased beyond a certain
number the utilization dropped due to the effects of switching overhead.

We conducted a validation experiment with the LocusRoute trace that was also used in
Weber and Gupta’s simulation study. We measured parameters from the trace, such as process
working sets and the constant ¢, and derived processor utilizations for parameter ranges consid-
ered in the simulation study. We found a good match between the model predictions and the
simulation numbers. For instance consider Table 2. Analytically computed processor utilizations
for varying context-switch intervals, network latencies, and processes are shown, along with the
corresponding numbers from the simulation study in parentheses. The same numbers are plotted
in Figure 10; the simulation graphs from (18] are on the left. We observe that the model was
fairly accurate in predicting not only the relative effects of varying several parameters, but also
the absolute processor utilizations.
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Overhead 1 4 16

p i| Latency 18 ! 18 23 18 23

1 0.87 (.885) 0.§4 (.851) |t 0.87 (.885)  0.84 (.851) 1|l 0.87 (.885)| 0.84 (.851)
2 099 (.940) [ 059 (.928) || 0.95 (.940) | 0.95 (.928) [ 0.83 (.861) | 0.83 (.862)
4 (098 (.936)]0.98 (.933) | 0.93 (.904)]0.93 (.901){l 0.76 (.778){ 0.76 (.778)

Table 2: Processor utilizaticns predicted by the model and measured from simulations for
context-switch overheads 1, 4, and 16, memory latencies 18, and 23, and processes 1, 2, and 4.

8 Directions for Future Work and Status

The model can be extended in several ways. Direct network models can be used in place of
our mu!tistage network. Multithreading will have a greater role to play in such networks due
to potentially higher network latencies. The impact of the number of hardware contexts on the
clock cycle of the processor can be modeled. An interesting area for research is the impact of
grain size and degree of parallelism on working set sizes of threads. A reduction in working set
size of threads is expected with increased parallelism, a trend our simulations confirm. Such
a decrease implies that (1) increasing the multithreading degree of the processor might not
proportionally increase the miss rate, (2) working set sizes of fine-grain threads are expected to
be relatively small, encouraging the design of single-level, integrated, smaller, faster caches for
shared data.

What is a good scheduling strategy for threads? More threads on few processors implies
good utilization of these processors, potential sharing of data in the cache, and communication
locality, but suffers from cache interference and poor load balance. A performance ;tudy of
these effects would be useful. When is it best to switch register frames? When should we swap
contexts from register frames? In our current SPARC-based design switching between frames
does not come for free; Swapping process contexts from the processor is much more expensive.

The design of a multithreaded processor must solve several new problems in cache coherence
protocol design unique to multithreading. For example, one problem the ALEWIFE multiproces-
sor simulator exposed is the pinging of cache blocks between two threads on the same processor.
A thread switched out on a cache miss might find that the block was purged by an intervening
thread soon after the block was fetched from memory. This cycle can repeat indefinitely if the
two processes access blocks that map into the same cache location. A similar thrashing can
occur between threads in different processors. The directory-based cache coherence protocol in
ALEWIFE has been modified to ensure forward progress in such situations.

Another potentiai nroblem can arise if busy-wait spinning is the mode of synchronization
used. By not relinquishing the processor, a thread busy waiting on a lock can preclude the release
of the lock held by another thread awaiting its turn on the processor. In APRIL, synchronization
is achieved using full-empty bits that trap the processor on an access to a locked block. Other
busy-waiting mechanisms we are exploring include adaptive backoff [19] with blocking.

The current status of the design is that the ALEWIFE simulator, ASIM, composed of the
APRIL processor, the cache, and network, is operational. The Mul-T [20] compiler and pro-
gramming system and has been adapted for APRIL. Experimentation with several parallel ap-

®Initially we conjectured that such pinging would occur rarely, but simulations showed we were overly
optimistic.
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plications including the Viterbi search in speech recognition, an ob ject-oriented logic simulation
system, particle in cell code, Boyer, are in progress. Initial simulations with parallel applica-
tions show that the fixed miss rate is fairly high causing multithreading to be potentially useful.
Several related issues Such as suitable sizes of each frame, number of frames, and hardware
versus software frame management, rapid context switching in the presence of coprocessors, and
adaptive backoff spinning versus blocking are the focus of ongoing research.

9 Conclusions

Multithreading a processor to allow overlapping memory and network access times is a useful
technique to improve processor utilization. We have developed a novel analytical model for mul-
tithreaded processors in the presence of caches. The model also accounts for network contention
and context-switching overhead.

Our results indicate that multithreading is useful under a wide range of cache, processor
and network parameter variations. Increased network contention effects due to multithreading
are small, while cache contention can significantly hurt the performance. QOur analyses show
that lowering the working set sizes of the individual threads dramatically improves processor
performance. Large caches yield close to full processor utilization with as few as 2 to 4 processes,
while small caches force the use of two to four times as many processes for the same high
utilization. If portions of the working sets of the threads are shared, the negative cache effects
of multithreading are mitigated, for the cost of fetching in shared blocks is amortized over
several threads. Multithreading is shown to be beneficial when the fixed cache miss rate is
large compared to the intrinsic interference component of misses. Multiprocessor simulations of
parallel applications indicate that such behavior is increasingly likely as we exploit parallelism
at finer grains.
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A Extensions to the Model
We will now suggest the changes that need to be made to the cache model to account for

sharing between processes and non-stationary behavior. We will start with Equation 9 for the
component of misses due to multithreading,

m'(p) = v'(p)(P; Du, <, (1 - %)" (1 - i'f’—”))

T T
!
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where,

A.1 Process Sharing

Portions of the working sets of processes that are shared are not impacted by interference from
other processes. Furthermore, the nonstationary component of the miss rate m,, is reduced
because just one process need fetch the shared blocks into the cache for the first time. Let upri,
be the number of blocks that are private to the given process out of the total u blocks in its
working set.

The multithreading miss rate becomes,

i) = I S 1 3)7 (1 ) (32 - el

Vpriv u u p
(135)

Upriy

Vpriw(P) = —————7
priv 1 + v,,,;,,%u

Vpriv = S [1 - (1 - l\) “?'”’]

The first term in Equation 15 is tk= context-switching component m/, as before. Because the
shared cache blocks are not impacted by context switckirg, all the working set related variables
are replaced by the corresponding private working set and derived variables.

The derivation of the second term, however, is not as straightforward. Recall, in Equation 8,
u(1-1/5)* is the number of blocks of a process that do not collide in a single-process cache, and
(1=7'(p)/v) is the extra fraction of blocks that become involved in collisions in the multithreaded
cache. We now multiply this fraction by (upriv/u) so that only the private blocks in the working
set are included in this extra component.

The third term arises because the nonstationary component of the miss rate decreases. In
this term, mg,(u — u,)/u is an estimate of the proportion of the nonstationary miss rate due to
shared references for a single process, which when divided by p yields the actual nonstationary
component of the miss rate for blocks shared between p processes. The term 1':1,..-(1';""-)~‘L-l
must be subtracted from the single process nonstationary miss rate component m,, to yleld the
corresponding component for p processes with sharing.

Because the effective working set is reduced to u — up, sharing in the cache can signifi-
cantly decrease the multithreading interference. It is also conceivable that the nonstationary
reduction term is greater than the increase in miss rate due to multithreading, and actually
result in improved cache hit rates. A similar anomalous miss rate reduction was observed in a
multiprogrammed system due to process sharing of operating system structures [21].

25




A.2 Non-Stationary Effects

As Appendix B shows, modeling the effect of non-stationarity in the addressing behavior of a
program for multiprogrammed caches, where the time quanta are large enough to bring in the
entire process working set, is straightforward. However, the effect on a finely multithreaded
cache are harder to estimate.

Let u,, be the number of blocks that are renewed by a process every . The the probability
a block of a process is dead on a context switch is (v — u,,)/u. The effect of nonstationarity on
the extrinsic component of the miss rate is to reduce the effective number of blocks left behind
by a process in the cache when it is switched out. The rationale is that the dead blocks do not
give rise to extrinsic interference. Then,

miu(p) = o, (p) L2

where v—
vy(p) = v'(p)—=
u
The impact on the intrinsic interference component can be estimated as follows: The first
miss of a colliding block that is actually dead due to nonstationarity in the program must not
be counted as a intrinsic interference miss. The number of such misses is the product of the

number of colliding blocks and the probability a col'iding block is dead. The probability of a
dead colliding block is estimated as u,,/u. Therefore, the intrinsic interference miss rate due to

multithreading
] ) cu 1\* vl(p)) u 1\¥ vl(p) Uny
mintr—mmtr—';<1—§') (1— " —;(1—-5-,) (I—T)T

% ’
Mingr = Mintr = ; <1 - %) (1 -~ zi—p)) [c - %]

B A Multiprogrammed Cache Model

or

A model for multiprogrammed caches where the context-switch interval is large enough to allow
a process to completely replenish its working set before being switched out, was derived in [135).
This model predicts the cache miss as a function of the number of processes active, the degree
of associativity of the cache, the cache size, and the working set sizes. For the important special
case of direct-mapped caches the model can be greatly simplified. We will modify the model to
account for nonstationary behavior, or for those program blocks that are renewed across context
switches. From [15]), the number of multiprogramming misses that process i suffers on being
rescheduled in a cache with p active processes, degree of associativity D, number of sets S, is

d=D e=u;
s E) bin(u;, %,d) ,“;6 MIN(d,e +d - D)bin(u;, :;.,e)

In the above expression, the term bin(u.-,*,d); is the binomial distribution and represents the
probability that d blocks from the working set of process i of size u; map into one of the §
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cache sets. u; represents the sum of the working-set sizes of the all the other processes, and
bin(u;, §,€) represents the corresponding probability that e blocks of the other (p— 1) processes
map into any cache set. The number of misses divided by the time quantum of execution of the
process (say. 7) yields The context-switching miss rate m,(p).

If the working set size of each process is u, substitute u; = u, and u;; = (p—~1)u. Furthermore,
if the cache is direct-mapped (D = 1), the above equation simplifies to

mq(p) = gbin(u,%,l) [1 - bin((p ~ l)u,%,ﬂ)]

Recalling, bin(u, §,d) = ( :; ) (%)‘ (1 - -})u-d, we get,

= 23697 -6

-1
In the above equation, % (1 - i-)u is the probability a set has ezactly one block of process i

-1
mapped onto it in a direct-mapped cache,” and [1 - (1 - %)(p )u] is the probability that at

least one of the blocks of the intervening (p — 1) processes maps into that cache set purging the
block of process . The product of the above two probabilities and S yields the number of blocks
of process ¢ purged. For § >> pu the miss rate component further simplifies to

u?
mes(p) = (p - I)E
The above relation shows that the multiprogramming miss rate in large caches, for small p, is
linearly related to the number of processes and to the square of their working set sizes.
We will now contrast this miss rate with the trend in fine-grain multithreading. From
Equations 12 and 14 the multithreading induced miss rate

1
c

m) =< (14 1) L)

Interestingly, the miss rate for fine or coarse grain multiprogramming depends on the square
of the working set u and linearly on the number of processes; the difference lies in their constants.

That is, ,
me_, (1 + 1)
Me, c

where typical measured values for ¢ are between 1.5 and 2.5.

"As explained in [15], we do not count purges of blocks from sets that have more than one block of process s
mapped onto it because such blocks are more likely to be purged by the intrinsic interference withia the process
iteelf. A simpler model, albeit inaccurate, might consider all the blocks left behind in the cache by process i,
yielding, (1 - (1—4)") for the probability that a set has at least one block mapped to it. Note that both
expressions (using exactly one and at least one) simplify to & when w << S, which is often the case. Simulation
with address traces confirmed that the two approximations gave virtually indistinguishable results for large caches.
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Figure 11: Miss rate of a multiprogrammed cache.

B.1 Correcting the Multiprogramming Model for Nonstationarity

An inaccuracy with the above mode] was assumption that every block left behind in the cache
when a process relinquished the processor would be reused by the process on its return. Conse-
quently, for application programs where the working set changed significantly between context
switches the model overestimated the multiprogramming misses. This inaccuracy is easily fixed
by reducing the working set size of the process i that relinquishes the processor by the fraction
of blocks that are renewed by the processes. The number of blocks that are fetched in each time
quantum for the first time can be estimated as the total number of unique blocks in a trace
divided by the number of time quanta [15]. Let this number be denoted as u,,. Then the miss
rate can be written as

Mey(P) = g =) (1 - :;.)"""'"‘ [1 _ (1 _ _;_ )(p-uu]

Figure 11 compares the multiprogramming induced miss rate for the model and simulations
with the three traces and cache parameters used in Section 5. The simulations were conducted
as follows. We extracted all the references of a single process from a multiprogrammed trace and
round-robin scheduled p instances of this single-process trace to simulate a multiprogramming
level of p, assuming a time quantum of 10,000 references. Each instance of the trace was
assigned a random number as a process identifier (PID). The PID of each constituent process was
hashed in with the addresses to randomize the locations in the cache occupied by corresponding
references of the p subprocesses. It is easy to see that the model compares well with simulations.
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